
patterns & practices Symposium 2013

Introducing Git version control into

your team

Mark Groves
mgroves@microsoft.com

@mgroves84

mailto:mgroves@microsoft.com
http://twitter.com/mgroves84

History

Created by Linus Torvalds for work on the

Linux kernel ~2005

Some of the companies that use git:

Strength of Git

Everything is done offline

…except push/pull

Everyone has the complete history

Centralized VC vs. Distributed VC

Central Server
Remote Server

Initialization

C:\> mkdir CoolProject
C:\> cd CoolProject
C:\CoolProject > git init
Initialized empty Git repository in
C:/CoolProject/.git
C:\CoolProject > notepad README.txt
C:\CoolProject > git add .
C:\CoolProject > git commit -m 'my first
commit'
[master (root-commit) 7106a52] my first commit
1 file changed, 1 insertion(+)
create mode 100644 README.txt

Branches Illustrated

master

A

> git commit –m ‘my first commit’

Branches Illustrated

master

> git commit (x2)

A B C

Branches Illustrated

bug123

master

> git checkout –b bug123

A B C

Branches Illustrated

master

> git commit (x2)

A B C

D E

bug123

Branches Illustrated

master

> git checkout master

A B C

D E

bug123

Branches Illustrated

bug123

master

> git merge bug123

A B C D E

Branches Illustrated

master

> git branch -d bug123

A B C D E

Branches Illustrated

master

A B C D E

F G

bug456

Branches Illustrated

master

A B C D E

F G

bug456

> git checkout master

Branches Illustrated

master

A B C D E

F G

> git merge bug456

H

bug456

Branches Illustrated

master

A B C D E

F G

> git branch -d bug456

H

Branches Illustrated

master

A B C D E

F G

bug456

Branches Illustrated

master

A B C D E

> git rebase master

F’ G’

bug456

Branches Illustrated

master

A B C D E

> git checkout master
> git merge bug456

F’ G’

bug456

Branching Review

Local branches are very powerful

Quick and Easy to create ‘Feature’ Branches

Rebase is not scary

Software is a Team Sport

Sharing commits

My Local

Repo

Tom’s Repo

Tracey’s

Repo

Matt’s Repo

A B C

A B C A B C

A B C

Sharing commits

My Local

Repo

Tom’s Repo

Tracey’s

Repo

Matt’s Repo

A B C

A B C A B C

A B C

Remote Repo

A B C

D

D

D

D

D

Setting up a Remote

Adding a remote to an existing local repo
C:\CoolProject > git remote add origin https://git01.codeplex.com/coolproject
C:\CoolProject > git remote -v
origin https://git01.codeplex.com/coolproject (fetch)
origin https://git01.codeplex.com/coolproject (push)

Setting up a Remote

Clone will auto setup the remote
C:\> git clone https://git01.codeplex.com/coolproject
Cloning into 'coolproject'...
remote: Counting objects: 3, done.
remote: Total 3 (delta 0), reused 0 (delta 0)
Unpacking objects: 100% (3/3), done.
C:\> cd .\coolproject
C:\CoolProject> git remote -v
origin https://git01.codeplex.com/coolproject (fetch)
origin https://git01.codeplex.com/coolproject (push)

Branches Illustrated

A

master

B C D E

bug123

Branches Illustrated

A

master

origin/master

B C D E

bug123

Branches Illustrated

A

B C D E

master

bug123

origin/master

Branches Illustrated

A

B C D E

master

bug123

F G

origin/master

origin/master

Branches Illustrated

A

B C D E

master

bug123

> git checkout master

origin/master

Branches Illustrated

A

B C D E

master

bug123

F G

> git pull origin

origin/master

Pull = Fetch + Merge

Fetch - updates your local copy of the

remote branch

Pull essentially does a fetch and then runs

the merge in one step.

Branches Illustrated

A

B C D E

master

bug123

F G

origin/master

Branches Illustrated

A

B C D E

master

bug123

F G

> git checkout bug123

origin/master

Branches Illustrated

A

B’ C’ D’ E’

master

bug123

F G

> git rebase master

origin/master

Branches Illustrated

A

B’ C’ D’ E’

master

bug123

F G

> git checkout master

origin/master

Branches Illustrated

A

master

bug123

F G

> git merge bug123

B’ C’ D’ E’

origin/master

Branches Illustrated

A

master

F G

> git push origin

B’ C’ D’ E’

bug123

origin/master

Push

Pushes your changes upstream

Git will reject pushes if newer changes exist

on remote.

Good practice: Pull then Push

Branches Illustrated

A

master

F G B’ C’ D’ E’

bug123

origin/master

Branches Illustrated

A

master

F G

> git branch -d bug123

B’ C’ D’ E’

origin/master

Short vs. Long-Lived Branches

Great for multi-version work

Follow same rules as Master…Story branches

Integrate frequently

Pushed to Remotes

Branches Illustrated

E

master

origin/master

Branches Illustrated

E

master

origin/master

develop

> git branch develop

Branches Illustrated

E

master

origin/master

develop

> git push origin develop

origin/develop

Branches Illustrated

E

master

origin/master

develop

> git checkout develop

origin/develop

Branches Illustrated

E

master

origin/master

F G

develop
origin/develop

Branches Illustrated

E

master

origin/master

F G

develop

origin/develop

> git pull origin develop

Branches Illustrated

E

master

origin/master

F G

develop

origin/develop

> git checkout –b idea

idea

Branches Illustrated

E

master

origin/master

F G

develop
origin/develop

> git commit

idea

H

Branches Illustrated

E

origin/master

F G

origin/develop idea

H

I

master

develop

Branches Illustrated

E

origin/master

F G

origin/develop idea

H

master

develop

> git pull (at least daily)

I

Branches Illustrated

E

origin/master

F G

origin/develop idea

H

master

> git checkout develop

I

develop

Branches Illustrated

E

origin/master

F G

origin/develop idea

H

master

> git merge idea (fast forward merge)

I

develop

Branches Illustrated

E

origin/master

F G

origin/develop

H

master

> git branch –d idea

I

develop

Branches Illustrated

E

origin/master

F G

origin/develop

H

master

> git push origin develop

I

develop

Merge Flow vs. Rebase Flow

E

origin/master

F G

origin/develop

H

master

> git push origin develop

I

develop

Branches Illustrated – Merge Flow

E

origin/master

F G

origin/develop

H

master

> git checkout master

I

develop

Branches Illustrated – Merge Flow

E

origin/master

F G

origin/develop

H

master

> git merge develop

I

develop

J

Branches Illustrated – Merge Flow

E

origin/master

F G

origin/develop

H

master

> git push origin

I

develop

J

Branches Illustrated – Rebase Flow

E

origin/master

F G

origin/develop

H

master

> git checkout master

I

develop

Branches Illustrated – Rebase Flow

E

origin/master

F G

origin/develop

H

master

> git rebase develop

I’

develop

I

Branches Illustrated – Rebase Flow

E

origin/master

F G

origin/develop

H

master

> git push origin

I’

develop

Rebase Flow

E

origin/master

F G

origin/develop

H

master

I’

develop

E

origin/master

F G

origin/develop

H

master

I

develop

J

Merge Flow

Short vs. Long-Lived Branches

Great for multi-version work

Follow same rules as Master

…use Story branches

Define your conventions

What branches do you want to share?

Branch per environment?

Other very powerful tutorial

https://www.atlassian.com/git/tutorials/comparing-
workflows/centralized-workflow

